People Counting in Crowded and Outdoor Scenes using an Hybrid Multi-Camera Approach
نویسندگان
چکیده
This paper presents two novel approaches for people counting in crowded and open environments that combine the information gathered by multiple views. Multiple camera are used to expand the field of view as well as to mitigate the problem of occlusion that commonly affects the performance of counting methods using single cameras. The first approach is regarded as a direct approach and it attempts to segment and count each individual in the crowd. For such an aim, two head detectors trained with head images are employed: one based on support vector machines and another based on Adaboost perceptron. The second approach, regarded as an indirect approach employs learning algorithms and statistical analysis on the whole crowd to achieve counting. For such an aim, corner points are extracted from groups of people in a foreground image and computed by a learning algorithm which estimates the number of people in the scene. Both approaches count the number of people on the scene and not only on a given image or video frame of the scene. The experimental results obtained on the benchmark PETS2009 video dataset show that proposed indirect method surpasses other methods with improvements of up to 46.7% and provides accurate counting results for the crowded scenes. On the other hand, the direct method shows high error rates due to the fact that the latter has much more complex problems to solve, such as segmentation of heads.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملDepth Information Guided Crowd Counting for Complex Crowd Scenes
It is important to monitor and analyze crowd events for the sake of city safety. In an EDOF (extended depth of field) image with a crowded scene, the distribution of people is highly imbalanced. People far away from the camera look much smaller and often occlude each other heavily, while people close to the camera look larger. In such a case, it is difficult to accurately estimate the number of...
متن کاملInternational Conference on Systems , Signals and Image Processing
This paper presents a novel method for people counting in crowded scenes that combines the information gathered by multiple cameras to mitigate the problem of occlusion that commonly affects the performance of counting methods using single cameras. The proposed method detects the corner points associated to the people present in the scene and computes their motion vector. During the training st...
متن کاملA Multiview Approach to Tracking People in Crowded Scenes Using a Planar Homography Constraint
Occlusion and lack of visibility in dense crowded scenes make it very difficult to track individual people correctly and consistently. This problem is particularly hard to tackle in single camera systems. We present a multi-view approach to tracking people in crowded scenes where people may be partially or completely occluding each other. Our approach is to use multiple views in synergy so that...
متن کاملHECOL: Homography and epipolar-based consistent labeling for outdoor park surveillance
Outdoor surveillance is one of the most attractive application of video processing and analysis. Robust algorithms must be defined and tuned to cope with the non-idealities of outdoor scenes. For instance, in a public park, an automatic video surveillance system must discriminate between shadows, reflections, waving trees, people standing still or moving, and other objects. Visual knowledge com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.00326 شماره
صفحات -
تاریخ انتشار 2017